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1.Introduction 

Systems of integral equations have attracted much attention in a variety of 

applied sciences. These systems were formally derived to describe many 

problems in plane elastic deformation, fluid mechanics, and mixed boundary 

value problems in physics and engineering
[1]

. 

Approximate solutions of system of linear integral equations are of 

importance in physical problems. So far there exists no general method for 

finding solution of this problem, there is not much study on solution methods of 

integral equation systems, for this reason, we present in this paper two methods 

for solving this system, we use the Chebyshev polynomials method
[2,3]

and 

Adomian decomposition method
[4,5]

. 
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2. Chebyshev Polynomials Solutions. 

        Different kinds of polynomials and quadrature  rules play an important role 

in applied mathematics, a Chebyshev collocation method has been presented to 

solve systems of  linear integral equations in terms of Chebyshev polynomials 

in 
[2]

. The method transforms the integral system into the matrix equation with 

the help of Chebyshev points
[6]

.  

This procedures are stable and convergent, which have been proved in
[7]

, 

and error estimates in weighted 
p

L  norm, +∞≤≤ p1  are given . 

2.1 Chebyshev Polynomials Solutions.  

  We consider systems of  K  linear integral equations of Fredholm in the form  
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A system of equations can always be written as a single vector valued equations 
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Similarly , let )(xf be a vector valued function with components )(xf
i

and 

let )(xP  and ),( txK be kk × matrices with entries )(xp
ij

and ),( txk
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respectively . 

Then (1) reduce to : 
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The purpose of this section is to get solution as truncated Chebyshev series 

defined by  

∑
=

≤≤−==

N

j

jiji tkitTaty
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)3(11,,...,3,2,1,)()(  

Where )(tT
j

denote the Chebyshev polynomials of  the first kind , 
ij

a  are 

unknown Chebyshev coefficients and N is chosen any positive integer . 

We suppose that the kernel functions and solutions of these systems can be 

expressed as a truncated  Chebyshev series , then (3) can be written in the 

matrix form  

   )4(,...,3,2,1,)()( kiAtTty
ii

==  

Where 
T

iNiiiN
aaaAtTtTtTtT ]...[,)](...)()([)(

1010
==  

Hence, the matrix )(tY defined as a column matrix of unknown functions can 

be expressed by  
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Similarly , kernel functions ),( txk
ij

can be expanded to univariate chebyshev 

series for each 
s
x  in the form 

)()(),(
0

//
tTxktxk rs

ij

r

N

r

sij ∑
=

=  

Where a summation symbol with double primes denotes a sum with first and 

last terms halved , 
s
x  are Chebyshev collocation points defined by  
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Then the matrix representation of ),( txk
sij

becomes  

)6()()(),( T

sijsij tTxktxk =  

Where 

)1(12
1

12102
1 )]()(...)()()([)(

+×−
= Ns

ij

Ns

ij

Ns

ij

s

ij

s

ij

sij xkxkxkxkxkxk  

Now, in substituting the Chebyshev collocation points into Eq.(2) it obtained a 

matrix system. This system can be rearranged in a new matrix form  

)7(IFYP +=  

 In which )(xI denotes the integral part of Eq.(2) and  
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When Chebyshev collocation points is put in relation(5) , the matrix Y becomes  

)8(ATY =  

Where  
T

N
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Therefore, we get the matrix I in terms of Chebyshev coefficients matrix 

in the form  

)11(AZkI =  

Where k is a column matrix of elements Nixk
i

,...,2,1,)( = . 

Finally using the relation(8)and(11)and then simplifying(7)we have the 

fundamental matrix equation 

)12()( FAKZPT =−  

Which corresponds to a system of )1( +Nk linear algebraic equations with 

the unknown Chebyshev coefficients. Thus unknown coefficients
ij

a can be easily 

computed from this fundamental equation and thereby we find the solution of 

Fredholm integral system in the truncated Chebyshev series . 

 

2.2 Numerical Examples  
 

         The method presented in this section is illustrated by the following 

examples.  

             Example 1 :  Consider a system of linear Fredholm integral equations 

∫∫
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And approximate the  solution by truncated Chebyshev series in the form 

11,2,1,)()(
3

0

≤≤−==∑
=

xixTaxy
jij

j

i
 

Then Chebyshev collocation points are  
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             Example 2 : 

                       Consider a system of linear Fredholm integral equations 
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Because the integrals are bounded in the range [0,1] , then solution can be 

obtained by means of the shifted Chebyshev polynomials )(* tT
j

. So we 

approximate the solution by truncated Chebyshev series in the form  

10,2,1,)()( *

2
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Then shifted  Chebyshev collocation points are  

0,,1
22

1
10

=== xxx  

After  simple algebraic manipulation the solution of the system is given by 

1,1 2

21
+=+= xyxy  

3. Adomian Decomposition Solution. 

       Recently a great deal of interest has been focused on the applications of the 

Adomian decomposition method to solve a wide variety of stochastic and 

deterministic problems
[8]

, The solution is the sum of an infinite series which 

converges rapidly to the accurate solution. Recently, the Adomian 

decomposition method has been applied for solving systems of linear and 

nonlinear Fredholm integral equation of the second kind [4]. In this paper we 

also used the modified decomposition method . 
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3.1 Method of  Solution.  

         The system of  Fredholm integral equations can be written as the 

following  

)13(],[,))(,,()()( batdssFtsVtGtF

b

a

∈+= ∫  

We suppose that the system(1) has a unique solution. However, the 

necessary and sufficient conditions for existence  and uniqueness of the solution 

of the system(13) could be found in 
[1]

 . 

Consider the ith  equation of (13) 
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To use the Adomian decomposition method , Let  
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In practice, all terms of the series ∑
∞
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so we have an approximation of the solution by the following truncated series 
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 To determine the Adomian polynomials , we write  
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Where λ  is a parameter introduced for convenience . 
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So (17) will be as follows  
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The modified form was established based on the assumption that the 

function )(tg  can be divided into two parts , namely )(
0
tg and )(

1
tg . Under 

this assumption we set  
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3.2 Numerical Examples  
 

             Example(3): 

      Consider a system of linear Fredholm integral equations in example.(2) 

Adomian decomposition method for this problem consist of the following 

scheme  
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The modified decomposition method yields  
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Table: Approximated solution for some values of t  are presented in Table1. 

  

2
E  )(

11,1
tϕ  )(tg  

1
E  )(

11,1
tϕ  )(tf  t 

0 1 1 0.0115 0.988498 1 0 

0.0069 1.033099 1.04 0.0152 1.184766 1.2 0.2 

0.0138 1.146198 1.16 0.0189 1.381033 1.4 0.4 

0.0207 1.339296 1.36 0.0226 1.577301 1.6 0.6 

0.0276 1.612695 1.64 0.0264 1.773569 1.8 0.8 

0.0345 1.965494 2 0.302 1.969836 2 1 
 

4. Conclusions 

       In this work, we conducted a comparative study between the Chebyshev 

collocation method and the modified decomposition method. the Chebyshev 

method is useful for acquiring the solution as demonstrated in examples. An 

interesting feature of this method is that when an integral system has linearly 

independent polynomial solution of degree N or less than N, the method can be 

used for finding the Semi-analytical solution. Moreover, it is seen that when the 

truncation limit N is increased , there exists solution . 
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This method is based on computing the coefficients in Chebyshev 

expansion of solution of a linear integral system, and is valid when the 

matrix functions P(x) and f(x) are defined in [-1,1] and the kernel functions 

in k(x,t) have a Chebyshev series expansion in this range . 

A considerable advantage of the method is that the Chebyshev 

coefficients of the solution are found very easily by using the computer 

programs such as Mathematica. Furthermore , the values of the solution at 

the collocation points are evaluated with the aid of the computer programs 

without any computational effort. 

The use of the Adomian decomposition method , both for systems of 

linear and nonlinear Fredholm integral equations of the second kind, drive a 

good approximation to the solution but with a large number of iterations, 

when we use the modified method , as it can be seen in examples , gives 

better approximations , in less iteration . 

The modified decomposition method is implemented in straightforward 

manner and it accelerates the rapid convergence of the decomposition series 

solution.  
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